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ABSTRACT:
This paper presents work on the development of automatic feature extraction from multispectral aerial images and lidar data based
on test data from two different study areas with different characteristics. First, we filtered the lidar point clouds to generate a Digital
Terrain Model (DTM) using a novel filtering technique based on a linear first-order equation which describes a tilted plane surface,
and then the Digital Surface Model (DSM) and the Normalised Digital Surface Model (nDSM) were generated. After that a total of
22 uncorrelated feature attributes have been generated from the aerial images, the lidar intensity image, DSM and nDSM. The
attributes include those derived from the Grey Level Co-occurrence Matrix (GLCM), Normalized Difference Vegetation Indices
(NDVI) and slope. Finally, a SOM was used to detect buildings, trees, roads and grass from the aerial image, lidar data and the
generated attributes. The results show that using lidar data in the SOM improves the accuracy of feature detection by 38% compared
with using aerial photography alone, while using the generated attributes as well improve the detection results by a further 10%. The
results also show that the following attributes contributed most significantly to detection of buildings, trees, roads and grass
respectively: entropy (from GLCM) derived from nDSM; slope derived from nDSM; homogeneity (from the GLCM) derived from
nDSM; and homogeneity derived from nDSM.
* Corresponding author.
1. INTRODUCTION
Research on automated feature extraction from aerial images
and lidar data has been fuelled in recent years by the need for
data acquisition and updating for GIS. The high dimensionality
of aerial and satellite imagery presents a challenge for
traditional classification methods based on statistical
assumptions. Artificial Neural Networks (ANNs) on the other
hand may represent a valuable alternative approach for land
cover mapping for such highly dimensional imagery. ANNs
require no assumption regarding the statistical distribution of
the input pattern classes (Hugo et al., 2007) and they have two
important properties: the ability to learn from input data; and to
generalize and predict unseen patterns based on the data source,
rather than on any particular a priori model. The Self-
Organizing Map is one of the most commonly used neural
network classifiers. It can be adjusted to adapt to the probability
distribution of the inputs (Seto and Liu, 2003).
In this paper we applied the SOM algorithm for combining
multispectral aerial imagery and lidar data so that the individual
strengths of each data source can compensate for the weakness
of the other. The low contrast, occlusions and shadow effects in
the image were compensated by the accurately detected planes
in the lidar data. However, edges of features are not located
accurately in lidar point clouds because of the lidar’s system
discrete sampling interval of 0.5m to 1m, (Li and Wu, 2008).
Therefore, we have derived 22 attributes from both aerial image
and lidar data by a number of algorithms to alleviate this
problem. To evaluate the contribution of the lidar data and the
generated attributes in the detection process, three separate
SOM classification tests were carried out using different input
data to determine the accuracy of feature detection against a
reference map:
1. The aerial image, the lidar data and the derived
attributes,
2. The aerial image and the lidar data,
3. The aerial image only as input data for the SOM.
Finally, the contributions of the individual attributes to the
quality of the classification results were evaluated.
2. RELATED WORK
There have been many research efforts on the application of
aerial images and lidar data for building extraction.
Rottensteiner et al., (2005) evaluated a method for building
detection by the Dempster-Shafer fusion of lidar data and
multispectral images. The heuristic model for the probability
mass assignments for the method was validated, and rules for
tuning the parameters of this model were discussed. Further,
they evaluated the contributions of the individual cues used in
the classification process to the quality of the classification
results, which showed that the overall correctness of the results
can be improved by fusing lidar data with multispectral images.
Matikainen et al., (2007) used a classification tree approach for
building detection. A digital surface model (DSM) derived from
last pulse laser scanner data was first segmented into classes
‘ground’ and ‘building or tree’. Different combinations of 44
input attributes were used. The attributes were derived from the
last pulse DSM, first pulse DSM and a colour aerial ortho
image. In addition, shape attributes calculated for the segments
were used. Compared with a building reference map, a mean
accuracy of almost 90% was achieved for extracting buildings.
The numbers of studies that have utilized ANNs for highly
spectrally dimensional image analysis are limited. Jen-Hon and
Din-Chang (2000) applied the self-organized map classification
(SOM) method for SPOT scene land cover classification. Hugo
et al. (2007) assessed the potential of the SOM neural network
to extract complex land cover information from medium
resolution satellite imagery using MERIS Full Resolution data.
3. STUDY AREA AND DATA SOURCES
Two test data sets of different characteristics were used in this
study. The first area is a part of the University of New South
Wales campus; Sydney Australia, covering approximately
500m x 500m. It is a largely urban area that contains residential
buildings, large Campus buildings, a network of main roads as
well as minor roads, trees and green areas. Lidar data were
acquired over the study area in April 2005, using an Optech
ALTM 1225 with a pulse repetition frequency (PRF) of 25kHz
at a wavelength of 1.047μm. The multispectral imagery was
captured by film camera by AAMHatch on June 2005 at 1:6000
scale. The film was scanned in three colour bands (red, green
and blue) in TIFF format, with 15μm pixel size (GSD of 0.09m)
and radiometric resolution of 16-bit as shown in Figure 1(left).
The second study area is a part of Bathurst city; NSW Australia,
covering approximately 1000m x 1000m. It is a largely rural
area that contains small sized residential buildings, road
networks, trees and green areas. Lidar data was acquired over
the area by a Leica ALS50 sensor in August 2008, operating
with a PRF of 150kHz at a wavelength of 1.064μm. The multispectral
imagery was captured by a Leica ADS40 sensor on
October 2007. Three colour band (red, green and blue) images
were collected at 50cm GSD as shown in Figure 1(right).
Figure 1. Orthophotos for UNSW (left), Bathurst (right).
4. METHODOLOGY
Feature extraction of the study area was implemented in several
stages as follow:
4.1 Filtering of lidar point clouds
Filtering is the process of separating on-terrain points (DTM)
from points falling onto natural and human made objects.
Axelsson (2000) developed an adaptive Triangulated Irregular
Network (TIN) method to find ground points based on selected
seed ground measurements. Whitman et al., (2003) used an
elevation threshold and an expanding search window to remove
non-ground points. Abo Akel et al., (2004) used a robust
method with orthogonal polynomials and road network for
filtering of lidar data in urban areas.
The basic assumption of the approach adopted in this paper is
that the height of a ground point is lower than the heights of
neighbouring non-ground points and the terrain can be
described using a simple tilted plane within small areas. The
method started by dividing the data into small 50m x 50m
square patches. In principle, the patch should be larger than the
largest building within the test area in such a way that no object
within the study area can totally cover the patch. Otherwise,
points falling over buildings will be classified as on-terrain
points. Then, the algorithm constructed a matrix, A (m, n),
where m and n are the number of patches in both X and Y
directions respectively, see figure 2(left). Then, the lower left
and the upper right coordinates for each patch were determined
and stored. Data from both the first and the last pulse echoes
were used in order to obtain denser terrain data and hence a
more accurate filtering process. For each patch we fitted tilted
plane surfaces to the terrain points using equation (1):
Z = a + b * x + c (1)
where X, Y and Z = coordinates of lidar point clouds.
The process of plane surface construction started with the
detection of two points, one on each patch border, in the Y
direction, which represent the minimum elevations on these
borders. The two points were then shifted in X directions by a
reasonable value, for example 1000m, while Z values remained
constant, see figure 2(middle). The reason behind the shifting
process is to create a new set of two points to construct a
comparison plane, see figure 2(right), which includes the four
detected points (two old and two new) and represents the
general slope of the patch. The main assumption here was that
the surface varies slowly from region to region over the patch
of interest. The four points were then used to determine the best
estimates of the coefficients of the plane by a least squares
solution. Based on the computed coefficient values of a, b and
c, equation (1) was applied for each individual point i with
coordinates Xi, Yi in the lidar point clouds to find the Z value of
its corresponding point on the plane. From a comparison of the
elevation of each data point with its corresponding elevation on
the generated plane surface, all points below, on or above this
plane within the threshold t (=15cm), were classified as onterrain
points. Threshold t was equal to the lidar system
accuracy. Figure 2 demonstrates the steps of the filtering
process, while figure 3 shows a part of the results for UNSW
data.
Figure 2. Dividing the area into small square patches (left),
detecting and shifting the lowest two points of the
patch (middle) and constructing the tilted plane and
removing the non-ground features (right).
Figure 3. Points filtered as on-terrain points in green colour
(left) compared to the aerial image (right).
Finally, the filtered lidar points were converted into an image
DTM, the DSM was generated from the original Lidar point
clouds (first and last pulses) and the nDSM was generated by
subtracting the DTM from the DSM, see figures 4. These are
grey scale images where tones range from dark for low
elevations to bright for high elevations.
Figure 4. DSM (left), DTM (middle) and the nDSM (right).
In order to analyze the produced filtering errors, a sample of
100 well distributed filtered points has been selected, overlaid
on the orthophoto and classified visually as ground and nonground.
Compared to those results, our algorithm has achieved
commission errors, classifying non-ground points as ground
points, and omission errors, classifying ground points as nonground
points, of about 3.1% and 5.2% for UNSW case study
and 5.9% and 9.4% respectively for Bathurst case study.
Compared with other methods, this technique is simple and
requires no work tuning parameters except for the patch size.
Also, fitting a simple tilted plane into a small square area
effectively removes most of the non-ground points especially
those on low vegetation.
4.2 Generation of attributes
Features or attributes commonly used for feature extraction
from aerial images and lidar data include height texture (Maas
and Vosselman, 1999) or surface roughness (Brunn and
Weidner, 1998) of the lidar data, reflectance information from
aerial images (Vögtle and Steinle, 2000) or lidar data (Hug,
1997), the difference between first and last pulses of the lidar
data (Alharthy and Bethel, 2002). The attributes calculated for
predefined segments or single pixels are presented as input data
for a classification method. Before generating the attributes, the
aerial photographs (already orthorectified by AAMHatch) were
registered to the lidar intensity image using a projective
transformation. The Root Mean Square (RMS) errors from the
modelling process were 0.01m and 0.01m in X and Y
respectively and the total RMS error was 0.02m, indicating an
accurate registration between image and lidar data and
demonstrating that most of the geometric distortions had
already been removed by the orthorectification process.
Following the transformation, the image was resampled to
30cm x 30cm and 50cm x 50cm cell size in case of UNSW and
Bathurst respectively to match the resolution of the lidar data. A
bilinear interpolation was used for resampling, which results in
a better quality image than nearest neighbour resampling and
requires less processing than cubic convolution.
In our test, a set of 78 possible attributes were selected as
shown in Table 1. Because of the way the texture equations
derived from the GLCM (Haralick, 1979) are constructed, many
of them are strongly correlated with one another. Clausi (2002)
analysed the correlations among the texture measures to
determine the best subset of measures and showed that
Contrast, Correlation and Entropy used together outperformed
any one of them alone. If only one can be used, he
recommended choosing from amongst Contrast, Dissimilarity
or Homogeneity. Based on these experiments, only 22 of the 78
possible attributes were uncorrelated and hence available for the
classification process as shown in the shaded cells of Table 1.
The attributes include those derived from the GLCM,
Normalized Difference Vegetation Indices (NDVI), standard
deviation of elevations, slope and the polymorphic texture
strength based on the Förstner operator (Förstner and Gülch,
1987).
Attributes Attribute R G B I DSM NDSM
Mean ● ● ● ● ● ●
St. Deviation ● ● ● ● ● ●
Spectral
Strength ● ● ● ● ● ●
Contrast ● ● ● ● ● ●
Dissimilarity ● ● ● ● ● ●
Homogeneity ● ● ● ● ● ●
A.S.M ● ● ● ● ● ●
Entropy ● ● ● ● ● ●
Mean ● ● ● ● ● ●
Variance ● ● ● ● ● ●
GLCM
Correlation ● ● ● ● ● ●
Height SD ● ● ● ● ● ●
Slope ● ● ● ● ● ●
Table 1. The full set of the attributes; attributes available for the
classification are shown by shading.
4.3 Land cover classification
The SOM (Kohonen, 1999) was used for classifying the images.
Figure 5 illustrates the basic architecture of an SOM. The input
layer represents the input feature vector and thus has neurons
for each measurement dimension. In our study, we applied a
separate neuron for each band. Therefore, the SOM has 29
input neurons which are: 22 generated attributes, 3 image bands
(R, G and B), intensity image, DTM, DSM and nDSM. For the
output layer of an SOM, we used a 15 x 15 array of neurons as
an output for the SOM. This number was selected because, as
recommended by Hugo et al. (2007), small networks result in
some unrepresented classes in the final labelled network, while
large networks lead to an improvement in the overall
classification accuracy. Each output layer neuron is connected
to all neurons in the input layer by synaptic weights.
Figure 5. Example of SOM with a 4 neurons input layer and
[bookmark: _GoBack]an equally spaced 5x5 neurons output layer.
